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An approximate analytic representation of the solution of a nonlinear equation describ- 

ing the subcritical axisymmetric shell bending was used in Cl] in an investigation of the 
stability of equilibrium of a semi-infinite circular cylindrical shell loaded by a uniform 
radial stress resultant along a hinge supported edge. In substance, this representation 
corresponds to the two first terms of the expansion of the desired nonlinear solution ina 
power series of the parameter 

p = uq “Q / (1:‘hp”) (112 : h / [/C 1/:3 (1 - v’) 1) 

Here Q is the intensity of the external radial stress resultant, II and It are the shell 

thickness and radius, and E and v are the Young’s modulus and Poisson’s ratio of the 
shell material. The construction of higher approximations was nor carried out because 
of their extreme awkwardness. 

However, the desire to solve more exactly the stability problem formulated in [l] 

forced the authors to return to the question of refining the solution of the nonlinear bound- 
ary value problem of subcritical shell bending. To solve this problem, the procedure of 

differentiating with respect to the parameter was used in combination with the method 

of finite differences. 
Differentiating (1.1) from [1] with respect to the parameter 11 and later going over 

to finite differences yields the following successive approximations process to the desired 
nonlinear solution (the meaning of the notation is disclosed in Cl]): if the functions 
rli (5) and iii (2) are a solution of the nonlinear problem for p ~~ pi, then the functions 

are the approximate solution for P = P,+, :-== pi + Ap , where 11~’ (I) and 6i’ (.r) are 

determined as a result of solving the linear boundary value problem 
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Vi’ rf + 26,’ cos 6, = 0, 6,*” + 2ei’qi sin 6, - 2qi’ cm 6, = 0 (0 <z < co) 

q,’ = 1, 6,” = 0 (r = cl), qi* = 6; _ n (z == m) 

Since there is an exact solution q,, G 6, f 0 for p = p0 = 0 , then starting therefrom 
and selecting a sufficiently small step Ap for the change in the parameter p, we can 

obtain an approximate solution of the non- 
linear problem for a number of values of this 

parameter. 
The process described was realized on an 

‘Y,W electronic digital computer where the linear 
boundary value problem governing the incre- 
ment in the solution, when going from the 
preceding to the succeeding step, was solved 
by the factorization method in finite differ- 
ences. The stability problem for the axisym- 
metric equilibrium state corresponding to the 

nonlinear solution obtained was formulated 

and solved as in Cl]. 
The calculations were performed in the 

Fig. 1 

0 < p < 7 range. The magnitudes of the 

steps in the parameter p and in the coordi- 
nate were varied in order to verify the accu- 

racy. The final results are presented in Fig. 1. 
Curves 3 and 4 determine values of the parameters $ and o as a function of p , 

which are the characteristics of the shell subcritical state. In particular, the greatest 
value of the ring stress is calculated by using I+ ; SUP 1 u2 1 N h’ p.pg / 2, and the great- 
est value of the angle of rotation by using o . sup 16 1 N co. Both these values are achi- 
eved on the shell edge. It is curious that the values of o-determined by the curve 4 
for p > S are close to n / 2, while the solution of the linear axisymmetric bending 
problem results in values of (u in the form of the line 5. The domain of elastic strain 
of the shell can be determined by means of the greatest value of the ring stress. Curve 

2 pictures the dependence of the critical value of the load parameter k : Q* / Q” 
(Q” N 16.X1 k/cp” is the critical value of the external stress resultant in determining the 
subcritical state by linear theory) on v/1 . Presented as curve 1 for comparison (heavy 
line) is the corresponding dependence from [l]. The dashed section of the curve ‘7 

emerges beyond the limits of the domain of definition of thin shells by the inequality 
11 / I< G+ 1 / 20. It should be treated as a formal continuation of the solution of the con- 
sidered eigenvalue problem in the parameter 1~ . The substantial discrepancy between 
curve 1 corresponding to the solution of the nonlinear problem in a first approximation 
[l] and curve ‘7 corresponding to the refined solution of the nonlinear problem, starts with 
the value 1/b- N U.1.3. However, the main deduction of Cl] remains valid : linearizing 
the subcritical state is admissible only for very small values of the ratio /L /i t(. In par- 

ticular, for h / I1 & 1.74.1UP 68 (1 ~- v2) the error in the magnitude of the critical 
load because of linearization does not exceed 5%. Outside this domain the error grows 
rapidly as the ratio h / it increases. 

The graphical dependences presented in [Z] can also be refined by using the results 
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presented here. 
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The solution of the axisymmetric problem for transversely isotropic bodies, ex- 
pressed in terms of generalized analytic functions, is constructed. We obtain for- 
mulas for the displacements and stresses, similar to the corresponding formulas 
of the plane problem. The representation of the generalized analytic functions 

by analytic ones, are indicated, and the analogue of the Cauchy-type integral 

which gives the possibility of reducing the boundary value problems to integral 
equations, is presented. As an example, we consider the action of forces which 
are distributed along a circumference in the interior of a transversely isotropic 

space. 
The plane problems of the theory of elasticity for transversely isotropic bodies 

are solved effectively with the aid of analytic functions of a complex variable 
[l]. In [Z, 31 the solution of axisymmetric and nonaxisymmetric problems for 
bodies of revolution with the aid of analytic functions and contour integrals,was 

considered. In the case of an isotropic elastic medium, the solution of axisym- 
metric problems with the aid of a class of generalized analytic functions [4] 
was proposed. 

1. Let lik (z, r) and I’k (z, r) be complex functions satisfying the system of equations 

where the parameter yk is some number, in general, complex. These functions, obviously, 
satisfy the differential equations 

i A,U,=O, \ h 
1 \, 

I A. -7 I-,-~-I) 
i (1.2) 

! 
a? a2 I a -- ,Ak=rh.‘~+~+ r i)r 
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